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ABSTRACT 

For purposes of monitoring and damage prognosis another important aspect is to know the external loads 
which act on a structure. The knowledge of these loads enables us to make an assessment of damage after 
extreme events and updated forecasts of the remaining life-time. In many practical applications it is not 
possible to measure the forces e.g. resulting from wind loads or traffic directly. Therefore, these forces are 
determined indirectly from dynamic response measurements. In this paper, an overview of available time 
domain load reconstruction methods is presented. An attempt of highlighting the main advantages and 
disadvantages of different approaches, which are used in engineering is done. The importance of sensors 
type as well as their locations is discussed. Finally, the methods applicability is shown. 

1.0 INTRODUCTION 

Aircraft structures, buildings, wind turbines, stadiums (during concerts or football matches) are some of the 
examples where the dynamics of the structure should be taken into consideration for reliable construction. 
Especially in the fatigue life assessment of the structure or some of its components, both material properties 
and load characteristics are essential parameters. Therefore the time history of external forces is an important 
quantity in the forecasting of the remaining lifetime [1]. In many practical applications the measurement of 
the external loads is limited or not possible due to sensor limitations or unknown nature of the external 
forces, see Fig. 1. Even when load measurement transducers are available, they may either alter the system 
properties (electronic circuits) or intrude the load path (contacts and joint). 

 

Figure 1: Offshore Wind energy plant under unknown dynamic loads from wind and waves. 
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The load identification has been studied extensively for the last two decades. Many attempts were made by 
engineers to solve this problem by using indirect measurement techniques, which include the transformations 
of related measured quantities such as acceleration, velocity, position or strain. These transformations 
generally lead to a so-called inverse problem, where system properties and responses are known while 
excitations are unknown. It is well known that inverse problems are often ‘ill-posed’ in the mathematical 
sense, that is one of 1) the existence, 2) the uniqueness, or 3) the stability of solution is violated [2, 3, 4, 5]. If 
this inversion can be done, the system itself becomes its own force sensor. A variety of methods were 
elaborated to overcome the above mentioned difficulties for external load estimation in the time and 
frequency domain ([6] - [13]). Stevens [3] wrote an excellent overview of this topic, which includes some 
earlier studies on inverse analysis of external forces. Some of these methods are based on the frequency or 
impulse response functions or use regularization and dynamic programming in the time domain, which was 
proposed by Trujillo and Busby [14] and applied by Doyle [6]. Others use an integration of measured 
acceleration signals [7] or can only determine the sum of all forces and moments applied to the center of 
mass (SWAT), [8]. Most of them require first to record the system responses and then apply the analysis 
methods for force history reconstruction or insert a time shift for identification of the forces in non-
collocated case (sensors and loads positions are not collocated) [2]. Although the indirect measurement of 
the external load history has been referred to so far, for a full understanding of the force identification it may 
be required to know: 1) the time history and 2) the locations of the applied forces. Generally all force 
reconstruction methods that where proposed by mechanical engineers can be summarized in three main 
groups [10]: 

1. Deterministic method: frequency or time domain methods 

2. Stochastic method (statistical models) 

3. Artificial intelligence-based methods (neural networks) 

Here the main focus is on showing certain advantages and disadvantages of the four methods. Three of them 
have been already extensively used: Inverse Structural Filter (ISF) [2, 13], Partial Modal Matrix technique 
(PMM) [7], Dynamic Programming (DP) [6, 14]. The fourth one is an Unknown Input Observer approach 
(UIO), which was proposed by Ha et al. [15, 16] for control purposes and adopted in [17] for external loads 
and states reconstruction of the structures. While most of these techniques have rigorous mathematical 
foundation, they are not presented here, details can be found in [2, 6, 13, 14, 15, 17 and 20]. Since all 
methods given in the literature have their own merits, limitations and drawbacks, applicability is often the 
decisive factor when choosing a particular method. 

2.0 INVERSE ANALYSIS 

2.1 Problem Definition 

The response of the structure to external forces can often be considered to be linearly dependent on the 
applied forces. This is the case when the system can be considered to be linear during the excitation process 
so that the deformations are small enough to neglect geometric nonlinearity. In such case the response y(t) of 
the structure can be related to the excitation force u(t) by a linear convolution integral in continuous time or 
by algebraic equations in discrete time: 

0

) ( ) ( ) ( ) ,
t

a t t d   y h u              
0

) ,
n

k i k
i

b i


y h u               c t) ( ) ( ) ( ),Y H Ut t     (1) 

where h(t) is the impulse response function IRF and hi are the Markov parameters of the linear system. The 
assumption has been made that u(t)=h(t)=y(t)=0 for t<0. The quantities H(t), U(t) and Y(t) are the 
transfer matrix, input and measurement vectors respectively and have following construction: 
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If the measurement responses are known then the problem of estimating the time history of external forces is 
referred as a deconvolution of the above integral. It is obvious that the IRF should be known as well, which 
leads to another problem of IRF construction either from measurement or from modeling. For sake of 
simplicity consider the algebraic equation (Eq. 1 c). Deconvolution of this equation is an ‘ill-posed’ problem, 
the matrix H(t) is ill-conditioned and consequently [18]: a) the system defined in (Eq. 1) can be 
numerically insolvable, b) if the solution of the (Eq. 1) exists, it may be unstable with regard to small 
disturbances (measurement noise). The ill-conditioning of the matrix H(t) strongly depends on [18]: 1) the 
sensor placement, 2) the size of the matrix H(t). Jacquelin et al. [5] has shown that by using the singular 
value decomposition (SVD) of a matrix H(t) as: 
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The ill-conditioning can easily be shown by the solution of (Eq. 1 c): 
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The ability to solve (Eq. 4) depends on the singular values SV of the matrix H(t). Moreover, by using the 
SV it is easy to show, that there exist different kinds of ill-conditioning [17]: solely ill-posed or ill-posed and 
rank-deficient problems. Their nature is based on the SV as well: 

• the SV decay gradually to zero with no particular gap: solely ill-posed problem, 

• the SV decay gradually to zero and there is a well-determined jump between two SV: ill-posed and 
rank-deficient problem.  

The solely ill-posed problem arises in case when the sensors and forces are collocated. On the contrast the 
ill-posedness and rank-deficiency appear when the measurements points and the excitation positions are not 
collocated. This generally means that the first row(s) of the H(t) are filled with zeros, due to time delay, the 
time that excitation waves need to reach the sensors. The complete problem is even more spoiled by the 
noise contamination of the measured responses Y(t), which can drive (Eq. 4) to unstable solutions. 

2.2 Solution Methods 

The above mentioned problems related to the force reconstruction have been solved by several methods. The 
main principle is based on the conversion of the ill-posed problem into a well-posed one, which is done with 
the help of different regularization techniques. Below four time domain methods are presented. 

2.2.1 Dynamic Programming (DP) 

The dynamic programming method is based on the reconstruction of the force history by the least square 
solution for the first-order state space system. The DP is a recursive algorithm which solves the least square 
problem in two steps: backward and forward sweep. That means that for a linear time-invariant discrete 
system (Eq. 5) (here the general state space is extended with 1k k   u u u ): 
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where: A, B, C and D are constant matrices, and xk, yk and uk are state, output and input vectors at time 
instance k, respectively. The sequence of uk should be found that minimize the regularized squared error 
function: 
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with the weighting matrices Ww and Wr . The Wr can be substituted by a diagonal matrix such as Wr=I. An 
L-curve method is used to pick a right value of . This approach allows a good load estimation for time 
variant or invariant systems as well as for the case when the sensors and forces are not collocated. Apart of 
the computational effort, the DP has following drawbacks: 

• the L-curve method works well only, if the measurements are noise free [5], 

• it is not applicable to non-linear systems, 

• online load reconstruction is not possible (which means that a complete sequence of measurement 
signals should be recorded before running the DP algorithm) 

2.2.2 Inverse Structural Filter (ISF) 

The ISF method estimates the loads history u, by means of a non-causal inverse structural filter. The 
dynamic system is represented in a form of first order state space as: 
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The Markov parameters hi, see (Eq. 1b), which can be obtained analytically or from physical test are related 
to the state space matrices as follows:  and i=1,2…n. Manipulation of (Eq. 7), in order 

to interchange the input and output, yields the inverse structural system: 
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Here, ri are the filter coefficients (inverse system Markov parameters) and n is the size of that filter. The 
Moore-Penrose pseudo-inverse D+ requires that D in (Eq. 8) has full column rank, or in other words that the 
number of sensors should be bigger or equal than the number of excitation forces. The presence of the feed-
through matrix D requires first: usage of accelerometers as measuring devices, second: the accelerometer 
sensors should be positioned at the same location as the excitation forces (except, modal models are used). 
When these two requirements are not satisfied the matrix D vanishes. For this case the system should be 
stepped forward in time by l steps. The step l is a non-causal lead which accounts the time of wave 
propagation from the source to the sensor. This lead stabilizing the inverse problem by removing the zero 
rows from the transfer matrix H(t), so that the ISF has following form: 
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The filter coefficien then calculated using a least square: ts 
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where H+  is a pseudo-inverse of ]. The beauty of
inverse needs to be calculated only once. This approach enables an almost online load reconstruction for 

vity to the measurement noise; 

The PMM method is an extension of the SWAT (Sum of Weighted Acceleration Techniques) and based on 
on his method required the knowledge of the mode shapes at all 

the Markov matrix [13  this method is that the pseudo-

time invariant systems as well as loads estimation in the case when the sensors and excitation positions are 
not the same. An individual sensor lead was proposed by [2] as an extension of this method. In summary, the 
disadvantages are: 

• the difficulties of choosing a proper non-causal lead l; 

• high sensiti

• non-applicability to nonlinear systems. 

2.2.3 Partial Modal Matrix (PMM) 

inversi  of the partial mode shape matrix. T
input and sensor locations. The modal coordinates allows one to use the non-collocated alignment of sensors 
and input forces positions.  

The force estimation is done as: 
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Here, the fI , fD  and fE are the vectors of m tia, modal damping and modal elastic forces
a pseudo inverse of the transposed modal matrix  and f(t) is a vector of external forces; 

calculated by successive integration. 

calcula : 

3) mber of inputs ni cannot exceed the number of

The
PMM is -inverse requires big instrumentation for good load estimation

odal iner ; the (XT)+ is 
X  are the , ,q q q 

generalized acceleration, velocity and displacement vectors. The inverse problem is solved in three main 
steps: 

1) Based on the accelerometer measurements at r locations, the velocities and displacements are  
( , ,x x x  ) 

2) Some modes ns are chosen, and generalized accelerations, velocities and displacements  
corresponding to these modes are ted ( ) ( ), ( ) ( ), ( ) ( ).q X x q X x q X xt t t t t t         
Here the number of modes ns cannot exceed the number of sensors r.  

Finally f(t) is determined by (Eq. 11). Here the nu  
modes ns. 

 PMM approach is applicable only when the complete measurements are at hand. The main drawback of 
 that the pseudo s ir n n  . 

2.2.4 Unknown Input Observer (UIO) 

The UIO is a time domain approach, which originally was invented for control engineering purposes [15, 
 a f the inputs and states (velocities, positions) of a linear or 16]. It llows simultaneous reconstruction o

nonlinear time invariant system. The main principle is based on the construction of the observer for a general 
first order nonlinear state space system:  
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and D are real, constant and of appropriate dimensions. f(.) is a real nonlinear vector function. The proposed 
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An appropriate set of observer matrices N, L, T and Q should be found, so that the error between the 
estimated inputs and states and the real one will converge to zero as the time evolves. It is possible to find 

to the application of force reconstruction is given in 
[20]. 

these matrices with the help of a linear matrix inequality (LMI) technique [19]. There are still two 
assumptions in this method that should be satisfied: the D matrix must have full column rank (this means that 
acceleration sensors have to be used); the number of sensors should be bigger or equal to the number of 
unknown inputs plus the number of nonlinear terms. Once the observer matrices are calculated, the inputs 
and states can be reconstructed simultaneously online. The ability of online reconstruction and inherited 
noise robustness make the UIO very attractive for external load estimation. One of the main drawbacks of 
this method is that it works only for invariant systems. 

A comprehensive discussion of the UIO with respect 

 

Figure 2: Scheme of state and input estimator structure for a class of nonlinear systems. 

3.0 EXPERIMENTAL SETUP AND RESULTS 

ure that should represent a scaled tower and 
e tripod is welded from steel pipes of the 

For the verification of the proposed UIO method a special struct
foundation of a wind energy plant was built (see Figure 3 left). Th
diameters (37.2 mm and 21.3 mm) and fixed to the concrete foundation with four bolts at each leg (see Figure 
3 left). The load was exerted on the tower with the help of a wind fan which was blowing on to aluminum 
plate. Between the plate and supporting beam which in its turn was rigidly connected to the tower, a force 
sensor was located for later validation of the force estimated by means of the observer. For data acquisition 
two types of sensors (a bi-axial accelerometer and two strain gauges) were used. These data was then fed 
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into the observer that was calculated on the basis of the FE model (see Figure 3 right). The initial FE model 
was improved using model-updating techniques, converted into modal coordinates and finally transformed 
into state space notation. The thick black spots on the model (see Figure 3 right) represent the locations of 
the accelerometer (top) and strain gauge (bottom) respectively. 

In the first step the obtained observer was tested in the Simulink/Matlab environment under different 
conditions. Mainly three questions were subject of these simulations: 

force was applied still 

For the from the FE model consisting of the 
first 30 mode shapes. The set of observers with 8, 10, 12 and 14 modes in which only the bending modes 

r 
accelerometer) when the noise on the other sensors has been kept constant and was equal to 2%. In Figure 4 

red by the relative discrepanc

 

1. How the complexity of the calculated observer (the number of modes which are included in the state 
space model) influences the reconstruction of external force? 

2. How much the noise level of each sensor changes the observer performance? 

3. Does the shift of the acceleration sensor location from the point where the 
preserve the stable load reconstruction (collocation problem)? 

simulations, the original system (see Figure 3) has been built 

were included in both (x and y) directions was calculated whereas the force was applied only in x direction. 

Each of these observers then was tested for increasing noise level on one of the sensors (strain gauge o

the relative error behavior between the 30 modes system (assumed to be an original system) and the 
reconstructed force for the observers with different number of modes is shown. Here the acceleration sensor 
was collocated with the position of the applied force. 

The relative error as well as the noise level was measu y : 

 2

exact noisySignal Signal
2

100relative
exactSignal




  (14) 

 

Figure 3: Laboratory test right (left) and FE model of the structure (right). 
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Figure 4: Relative simulated error of estimated force for different number of modes  
and (a) – relative noise level of strain gauge (b) – relative noise level of  

the collocated accelerometer and force. 

The load for all simulations was a unit force that was applied for 3 seconds at a single node on top (see 
Figure 3) in one direction described as (using Matlab functions): 

 200 20 30 10F sin square sawtooth(t) (2 t 2Hz) (2 t Hz) (2 t 220Hz)         (15) 

The same pattern of ex en the 
accelerometer was shifted by one node down (0.13 meter) from the force location. Figure 5 presents the 
observer performance for that case. Both figures show that the presence and increase of the noise especially 
in the strain gauge leads to higher deviation of the estimated load from the real one.  

citation as well as the noise variations was applied for the case wh

 

 

Figure 5: Relative simulated error of estimated force for different number of modes  
and (a) – relative noise level of strain gauge (b) – relative noise level of  

the non-collocated accelerometer and force. 
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Figure 6: Relative simulated error of the estimated force for different number of modes  
and relative change of the global Young  modulus E. (a) – collocated force and  

accelerometer (b) – non-collo  force and accelerometer. 

On the other hand  the strong force 
perturbation. There is an importan llocated observer behavior that 
can be noticed form Figures 4 and 5. The performance of the collocated observer is slightly improving as the 
observer size increases (higher number of modes included) whereas in the non-collocated case it shows the 
opposite tendency. This behavior can be due to weaker measured signals (either strain or acceleration) 
especially for higher modes of vibration which leads to the stronger oscillations of the estimated force. 
Change of the original system dynamics (shift of the eigenfrequencies) due to the environmental conditions 
(temperature variation, marine growth), was considered by another simulation test. Here the global Young’s 
modulus was varied from original one by 2.5%, 5% and 7.5% which led to the change of the natural 
frequencies. The performance of the observer with noise level in both sensors equal to 2% is presented in 
Figure 6 for both collocated and non-collocated cases. These results clearly show that the increase of the 
complexity of the observer does not necessarily improve the force estimation.  

Another issue which also can be noticed from Figure 6 is that the non-collocated observer is less sensitive to 
the changes

Finally a collocated obs  acquired measurement 
data which was directly fed into observer is shown in Figure 7 (a, b). One can see that the noise level of the 

’s
cated

 the noise contamination of the acceleration signals does not lead to
t difference between collocated and non-co

 of original system. 

erver using 8 modes was tested on a laboratory structure. The

strain gauge is very high which leads to strong perturbation of the reconstructed force in the steady state (up 
to 2.5 seconds) that is overlapped with the measured force in Figure 7 (c). Nevertheless the real force was 
estimated well after the fan was switched on (see Figure 7 c magnification). The relative error between the 
estimated and measured external force was 11.5% (where the error is 100 ||fest-fmeas||2 / ||fmeas||2). Some signal 
preprocessing was necessary, especially removing the offset from the acceleration and strain signals which is 
always present even if the structure is in steady state.  
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Figure 7. Measured signals and estimated force for external wind load applied on the  
laboratory structure in x direction. (a) – strain, (b) – acceleration, (c) – force. 

4.0 CONCLUSION 

All methods considered in this paper try to overcome ill-conditioning of the inverse problem by either 
regularizatio nto a well-
posed one. All of s. This requires 
modeling or system identification as first step for load estimation. The load locations are also assumed to be 

 The DP approach is a good and reliable technique for both, time invariant and 
ks well also when the sensor signals are polluted with noise. Nevertheless its 

n (Tikhonov, SVD truncation and so on), or transformation of the ill-posed problem i
them are based on the knowledge of mathematical or identified model

known a priori for all of them.
time variant systems, and wor
implementation is rather complicated. Together with the recursive algorithm it is not applicable for online 
load estimation. The ISF and UIO have the ability for online load reconstruction. The ISF can be easily 
implemented but requires individual sensor shifts for the non-collocated problem and is very sensitive to 
measurement noise. The UIO has better behavior than the ISF when the noise level is high. Apart of this the 
UIO is also suited for nonlinear systems and can be applied for non-collocated problems in case when modal 
coordinates are used. The PMM is an off-line approach; it does not suffer from the non-collocation because it 
uses modal models. Although the pseudo inverse, which is done twice in PMM requires that the number of 
inputs does not exceed the number of modes for a first inversion and the number of modes should be less 
than the number sensors for the second inversion. As a consequence a complicated instrumentation is needed 
for good force reconstruction and can be considered as a big disadvantage, especially in the case when 
several loads should be estimated. A comparison of the four methods for time domain load reconstruction 
revealed that all methods have their own merits, limitations and drawbacks. Therefore the application is the 
decisive factor when choosing a particular method. 

The unknown input observer was then applied to a laboratory structure of the WEP for external force 
reconstruction. The set of observers has been designed using an LMI for different numbers of modes; prior 
knowledge of the structure as well as the force location was available for the FEM. With the help of this set 
the behavior of the observer was validated with respect to noise contamination level and model variation. 
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The observers show a good estimation of the real/simulated force and are very robust to noisy measurements, 
although their performance depended on the accuracy of the model, noise level of the measurements and the 
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